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Abstract. The theory of Dimakis and Müller-Hoissen (Dimakis A and Müller-Hoissen F 2000
J. Phys. A: Math. Gen. 33 957–74) concerning bi-differential calculi and completely integrable
systems is related to bi-Hamiltonian systems of the Poisson–Nijenhuis type. In the special case
where the ambient manifold is a cotangent bundle one is able to recover and elucidate the theory
of Ibort et al (Ibort A, Magri F and Marmo G 2000 J. Geom. Phys. 33 210–23), which is in turn a
reworking in the bi-Hamitonian context of Benenti’s theory of Hamilton–Jacobi separable systems.
In particular, it is shown that Benenti’s conformal Killing tensor, which is central to his theory,
has an even more special form than has hitherto been realized and that when it is converted into a
field of endomorphisms by raising an index with the ambient metric, it necessarily has vanishing
Nijenhuis torsion.

1. Introduction

In a recent paper in this journal Dimakis and Müller-Hoissen [5] have shown how to generate
conservation laws in completely integrable systems by using a bi-differential calculus. In [3]
we described briefly how this approach to integrable systems is related to the standard approach
using bi-Hamiltonian structures of the Poisson–Nijenhuis type, for systems with finitely many
degrees of freedom. Here we shall extend that work as follows: we shall discuss the Poisson–
Nijenhuis case, corresponding to a simple bi-differential calculus, in greater detail; and we
shall describe a certain two-dimensional version of what Dimakis and Müller-Hoissen call
a gauged bi-differential calculus. Our constructions basically involve a symplectic manifold
(M,ω) and a type (1, 1) tensor field R on M . When M is a cotangent bundle T ∗Q and R is the
complete lift of a tensor field J on Q, the gauged bi-differential calculus we choose turns out
to be equivalent to the construction of bi-Hamiltonian systems on T ∗Q×R, recently discussed
by Ibort et al [7] and related by these authors to a theorem of Gelfand and Zakharevich. Ibort
et al use the Gelfand–Zakharevitch construction to explain some results of Benenti [1,2] on the
separation of variables in the Hamilton–Jacobi equation for Hamiltonians of mechanical type,
when the metric defining the kinetic energy admits a conformal Killing tensor with certain
properties. By considering the relationship between the work of Ibort et al and that of Dimakis
and Müller-Hoissen we have been able to sharpen some of the results of the former.

One of our main conclusions is that the conformal Killing tensor that lies at the heart of
Benenti’s construction is not merely of gradient type but has an even more special form. In
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particular, such a conformal Killing tensor necessarily has vanishing Nijenhuis torsion when
it is converted into a field of endomorphisms via the ambient metric. We shall also prove a
partial converse property, namely, that a conformal Killing tensor with vanishing Nijenhuis
torsion in the above sense and whose eigenvalues are functionally independent is necessarily
of the special type.

2. Simple bi-differential calculi and Poisson–Nijenhuis structures

LetM be a smooth manifold; it will be convenient for large parts of this paper to assume thatM
is simply connected, so that closed 1-forms are exact. We consider the exterior algebra ∧(M)

of forms on M , over the algebra C∞(M) of real-valued C∞ functions on M . By a simple (as
opposed to gauged) bi-differential calculus on ∧(M), we mean (following [5]) a pair (d1, d2)

of derivations of ∧(M) of degree 1, which both have the co-boundary property di
2 = 0 and

which commute in the graded sense, by which we mean that [d1, d2] := d1d2 + d2d1 = 0.
The fundamental observation of [5], for our purposes, is that if χ(0) ∈ C∞(M) satisfies
d1d2χ

(0) = −d2d1χ
(0) = 0, then one can inductively define a sequence of functions χ(m),

m = 0, 1, 2, . . . , according to the rule

d1χ
(m+1) = d2χ

(m).

In particular, let d1 be the ordinary exterior derivative d. We know from Frölicher–Nijenhuis
theory [6] that every other derivation of degree 1 which commutes with d (i.e. is a derivation
of type d∗) must be of the form dR for some type (1, 1) tensor field R on M . Furthermore,
the necessary and sufficient condition for dR to satisy dR

2 = 0 is that the torsion, or Nijenhuis
tensor, NR of R must be zero. We recall that the action of dR on C∞(M) is given by
dRf = R∗(df ), where we think of the tensor R as a homomorphism of the C∞(M)-module
of vector fields on M , and R∗ as its adjoint acting on 1-forms.

Now letχ(0) be a function satisfying ddRχ(0) = −dRdχ
(0) = 0, and consider the sequence

of functions χ(m) defined according to the rule stated above, which now reads

dχ(m+1) = dRχ
(m).

This sequence has interesting properties in the particular case in whichM is a Poisson manifold,
as we now explain.

Proposition 2.1. Suppose that (∧(M), d, dR) is a bi-differential calculus on a simply
connected manifold M; and that � is a bi-vector field on M such that �(R∗(α), β) =
�(α,R∗(β)) for any 1-forms α, β. Let χ(0) satisfy ddRχ

(0) = 0. Then the functions χ(m)

defined by dχ(m+1) = dRχ
(m) satisfy

�(dχ(m), dχ(n)) = 0 for all m, n � 0.

Proof. Note first that the assumption on � implies that for any functions φ, ψ ,

�(dRφ, dψ) = �(dφ, dRψ).

Clearly we have �(dχ(0), dχ(0)) = 0. Suppose that the assertion is true for m, n � k; then
for n < k

�(dχ(k+1), dχ(n)) = �(dRχ
(k), dχ(n))

= �(dχ(k), dRχ
(n)) = �(dχ(k), dχ(n+1)) = 0.

In exactly the same way we get �(dχ(k+1), dχ(k)) = �(dχ(k), dχ(k+1)), which must therefore
also be zero in view of the skew symmetry of �, and of course �(dχ(k+1), dχ(k+1)) = 0. It
follows that the assertion is also true for m, n � k + 1. �
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Corollary. Suppose in addition that [�,�] = 0, where [·, ·] is the Schouten bracket, so that if
{φ,ψ} = �(dφ, dψ) then {·, ·} is a Poisson bracket. Then the functions χ(m) are in involution.
In particular, if (M,ω) is symplectic, and R is symmetric with respect to ω, then the functions
χ(m) are in involution with respect to the Poisson bracket defined by ω.

We have shown in [3] that a bi-differential calculus (∧(M), d, dR) endows a symplectic
manifold (M,ω) such that ω(R(·), ·) = ω(·, R(·)) = ω1 and dω1 = 0 with a Poisson–
Nijenhuis structure. That is to say, there is a second Poisson bracket, which is compatible with
the given one, in the sense that any linear combination of the two, with constant coefficients, is
also a Poisson bracket. The recursion tensor of the structure is the R we started from, and the
inductively defined functions χ(m) are in involution with respect to both Poisson brackets. We
now wish to discuss in more detail the interplay between the various assumptions underlying
these statements.

We first recall the following result concerning Poisson structures from [9] (see also [8,10]).
Let P denote the C∞(M)-linear map of 1-forms to vector fields defined by a Poisson structure
(i.e. �(α, β) = 〈P(α), β〉), and suppose that R is a type (1, 1) tensor field such that
PR∗ = RP . For any 1-form α and vector field X on M , we define a vector field µR,P (α,X)

by

µR,P (α,X) = (LP(α)R)(X) − P(LX(R
∗α)) + P(LR(X)α).

As a consequence of the assumption that PR∗ = RP , µR,P is a type (1, 2) tensor field on M ,
sometimes called the Magri–Morosi concomitant (see [12]) of R and P . Then in order for RP
to define a Poisson structure it is sufficient that R satisfies the following two conditions:

(1) the torsion of R is zero;
(2) the Magri–Morosi concomitant of R and P is zero.

We now consider more specifically the case in which P comes from a symplectic form ω

on M . We shall establish some interesting equivalent ways of expressing the second condition,
that µR,P = 0; it is important, in the context of this paper, to note that these results do not
require that the Nijenhuis torsion of R vanishes.

Since µR,P is a tensor, it is sufficient to consider its value when its 1-form argument is
exact. For any function f on M , P(df ) = Xf , the Hamiltonian vector field associated with f

by P . Since P here comes from a symplectic structure, iP(α)ω = −α. Furthermore, µR,P = 0
if and only if iµR,P (df,Y )ω = 0 for all f and Y . Now

iµR,P (df,Y )ω = iLXf
R(Y )ω + LY (dRf ) − LR(Y )df

= iLXf
R(Y )ω + iY ddRf + d(iY dRf ) − d(iR(Y )df )

= iLXf
R(Y )ω + iY ddRf.

Note that the symmetry of R with respect to ω and the invariance of ω under the flow of Xf

together imply that LXf
R is also symmetric with respect to ω. Thus µR,P = 0 if and only if

iLXf
Rω = −2ddRf

for all functions f ; this is our first equivalent representation of the vanishing of µR,P .
The defining relation for ω1 likewise reads ω1 = 1

2 iRω, from which it follows, using the
definition dR = [iR, d], that dω1 = − 1

2dRω. Making use of the commutator identity (see [6])
[iX, dR] := iXdR + dRiX = −iLXR + LR(X), we next obtain

iXf
dω1 = − 1

2 iXf
dRω = − 1

2dRdf + 1
2 iLXf

Rω − 1
2diR(Xf )ω

= 1
2ddRf + 1

2 iLXf
Rω − 1

2LXf
ω1 + 1

2 iXf
dω1
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from which it follows that

iXf
dω1 = ddRf + 1

2 iLXf
Rω.

Hence, the vanishing of the right-hand side is further equivalent to dω1 = 0. In conclusion,
we have proved the following result.

Proposition 2.2. Let (M,ω) be a symplectic manifold with corresponding Poisson mapP . We
assume that R is a type (1, 1) tensor field such that PR∗ = RP . Then the following conditions
are equivalent:

(1) the Magri–Morosi concomitant µR,P vanishes;
(2) iLXf

Rω = −2ddRf for all f ;

(3) dω1 = 0, where ω1 = 1
2 iRω.

If in addition to the above equivalent conditions it is assumed that NR = 0, then RP

defines a second Poisson structure which is compatible with the original one. The second
Poisson bracket on M is given by

{f, g}1 = RP(df )g = R(Xf )g = ω1(Xf ,Xg) = −〈Xg, dRf 〉.
We then have a bi-Hamiltonian manifold of Poisson–Nijenhuis type. (For clarity, we should
point out that if R is assumed to be non-singular, then ω1 is symplectic and therefore also
defines a second Poisson structure, which this time is R−1P . This Poisson structure need not
be compatible with P , however. We shall be concerned only with the compatible structure
whose bracket {·, ·}1 is made explicit above.)

We consider a bi-differential calculus (d, dR) on a symplectic manifold (M,ω), where
R satisfies any, and hence all, of the conditions of proposition 2.2. Then there is a
corresponding Poisson–Nijenhuis structure. Suppose that R has n functionally independent
real eigenfunctions, each of which has geometric multiplicity two. As we showed in [3], one
then can generate through the iterative procedure associated with the bi-differential calculus
the sums of the powers of the eigenfunctions of R, and they are in involution with respect to
both Poisson brackets. It follows that the eigenfunctions themselves are in involution.

As an example of the Poisson–Nijenhuis structure just described, we consider the case in
which M is a cotangent bundle, M = T ∗Q, with its standard symplectic structure ω = dθ .
Let J be a type (1, 1) tensor field on Q, and write Ĵ for the linear transformation of fibres of
T ∗Q induced by J . We consider the 2-form ω1 on T ∗Q defined by

ω1 = d(Ĵ ∗θ)

and define a tensor R by ω1 = ω(R(·), ·). It was observed via a coordinate calculation in [7]
that this tensor is the complete lift of J to T ∗Q, which we will denote by J̃ . In fact it can
be shown by intrinsic methods, starting from the intrinsic definition of the complete lift J̃
given, for example, in [4], that the 2-form ω1 introduced above is the same as the ω1 = 1

2 iJ̃ ω
occurring in proposition 2.2. We discuss these issues in an appendix to this paper. For
the moment, however, we record that we have constructed a tensor R = J̃ on the symplectic
manifold (T ∗Q, dθ)which is manifestly symmetric with respect toω = dθ , and that moreover
the corresponding dω1 is zero. We thus know from proposition 2.2 that the Magri–Morosi
concomitant will vanish. Furthermore, accepting that J̃ is indeed the complete lift of J , we
know that NJ̃ = 0 if and only if NJ = 0 (see, e.g., [4] or [14]). Thus any type (1, 1) tensor
field on Q with zero torsion defines a Poisson–Nijenhuis structure on T ∗Q.

IfJ hasn functionally independent real eigenfunctions then J̃ has the same eigenfunctions,
each of which is doubly degenerate. In fact whenNJ = 0 and J has n functionally independent
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real eigenfunctions, we can take the eigenfunctions as coordinates qi on Q, and with respect
to these coordinates

J =
n∑

i=1

qi ∂

∂qi
⊗ dqi.

Then in terms of the corresponding canonical coordinates (qi, pi) on T ∗Q,

J̃ =
n∑

i=1

qi

(
∂

∂qi
⊗ dqi +

∂

∂pi

⊗ dpi

)

and ω1 = ∑n
i=1 q

idqi ∧ dpi . (The fact that the eigenfunctions are in involution with respect
to the standard Poisson bracket is not very interesting here—they are so because they are
independent of pi .)

This set-up is in fact locally typical, in the following sense. We return to the case of
an arbitrary symplectic manifold M and a type (1, 1) tensor field R which satisfies all the
assumptions which lead to the conclusion that its eigenfunctions are in involution. If these
eigenfunctions are functionally independent then by Liouville’s theorem we can use them
as one-half of a set of canonical coordinates, so that ω = ∑n

i=1 dq
i ∧ dpi with qi the

eigenfunctions of R. Then using the fact that NR = 0 it can be shown that the pi can be
chosen so that R and ω1 are given as above for J̃ . Such coordinates are called Darboux–
Nijenhuis coordinates (see [11]).

The equation ddRf = 0 plays an important role in the generation of the sequence of
functions in involution using the bi-differential calculus method (in the simple case, and also
in fact in the gauged case we will discuss below). It is therefore worth noting that our results
tell us the general solution of this equation, considered as an equation for f . For given R

with NR = 0, satisfying the other conditions assumed above, such functions f , in Darboux–
Nijenhuis coordinates, are of the form

f =
n∑

i=1

fi(qi)

where the qi are the eigenfunctions of R. As a byproduct, we see from the equivalences
established in proposition 2.2, that these functions are precisely the Hamiltonian functions f
such that LXf

R = 0.

3. Kinetic energy Hamiltonians

In the previous section we considered the condition ddRf = 0 as an equation for f , given R.
In fact the other interpretation, namely that in which f is given and R is the unknown, is more
interesting. If we also require thatR should satisfy the equivalent conditions of proposition 2.2,
then we are looking for tensors R which are invariant under Xf . Note that proposition 2.2
does not require the vanishing of the torsion of R; in analysing this situation we can therefore
start without assuming that the Nijenhuis condition is in effect.

We consider the particular case in which f (q, p) = h(q, p) = 1
2g(p, p) is a Hamiltonian

on T ∗Q of kinetic energy type, and R = J̃ is the complete lift of a type (1, 1) tensor field on
Q. We seek those J for which ddJ̃ h = 0. The simplest way of carrying out the calculations
is to use tensor methods. Thus we write

h = 1
2g

ijpipj

with the summation convention now in force; we regard the gij as the components of the
covariant form of the metric tensor g onQ, and use this metric freely to raise and lower indices.
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(In fact it is the need to raise and lower indices, or in other words to pass conveniently between
the contravariant and covariant versions of tensors relative to the metric, which makes the use
of the tensor calculus efficient here.) Furthermore we shall use the Levi–Civita connection
associated with the metric, denoting the connection coefficients by %i

jk and the covariant
derivative by a vertical bar.

We work in terms of 1-forms on T ∗Q adapted to the connection, which are given by dqi

and πi where

πi = dpi − %k
ij
pkdq

j

the dual basis of vector fields is {Xi, ∂/∂pi} where

Xi = ∂

∂qi
+ %k

ij
pk

∂

∂pj

.

Then if J = J i
j ∂/∂q

i ⊗ dqj ,

J̃ = J i
j

(
Xi ⊗ dqj +

∂

∂pj

⊗ πi

)
+ (J k

i|j − J k
j |i )pk

∂

∂pi

⊗ dqj .

We have dh = gijpjπi , and it follows that

dJ̃ h = J ijpjπi + gil(J
kj |l − J kl|j )pjpkdq

i.

Now

dπi = 1
2R

l
ijkpldq

j ∧ dqk + %k
ij
dqj ∧ πk

where Rl
ijk are the components of the curvature tensor. It follows that

ddJ̃ h = −J ijπi ∧ πj + gil(−J jk|l + J jl|k + J kl|j )pkdq
i ∧ πj

+ ( 1
2J

klRm
kij + gjk(J

lm|k − J lk|m)|i )plpmdq
i ∧ dqj .

Thus in order that ddJ̃ h = 0, J must satisfy J ji = J ij and

−J jk|l + J jl|k + J kl|j = 0.

The first two terms in the latter equation taken together are skew symmetric in k and l, while the
third term is symmetric. It follows that J kl|j = 0, that is, J must be a parallel tensor field with
respect to the connection. The further condition that J klRm

kij + J kmRl
kij = 0 is automatically

satisfied when the first two are also satisfied: in fact it is the integrability condition for a
symmetric tensor to be parallel. Summarizing, we have proved the following result.

Proposition 3.1. Letg be a given metric tensor field onQandh = 1
2g

ijpipj the corresponding
kinetic energy Hamiltonian on T ∗Q. Then, for a type (1, 1) tensor field J on Q to have the
property ddJ̃ h = 0, it is necessary and sufficient that J is symmetric and parallel.

This result, though not very exciting in itself perhaps, has one very interesting feature: the
torsion of J̃ vanishes automatically, as a consequence of the conditions for ddJ̃ h to vanish. In
the penultimate section of the paper we shall discuss the case of a Hamiltonian of mechanical
type, which is rather more complicated, and leads to involutory integrals of genuine interest;
in that case also it will turn out, remarkably, that the vanishing of the torsion of the recursion
tensor is a consequence of an analoguous condition on ddJ̃ h.
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4. A gauged bi-differential calculus and bi-Hamiltonian structures on an extended space

In a gauged bi-differential calculus (see [5]), the pair of derivations (d1, d2) of degree 1 is
replaced by operators Di = di + Ai , where the Ai in general are N × N matrices of 1-forms
and the operators Di act on N -component column vectors of forms. (Actually in [5] the Di

act on square matrices of forms, but as we pointed out in [3] the construction works just as
well as described above.) The Di further have to satisfy the conditions

Di
2 = 0 [D1,D2] := D1D2 + D2D1 = 0

(which are formally the same as the conditions satisfied by the derivations in a simple bi-
differential calculus).

We consider the following scheme, with N = 2. We take d1 = d and d2 = dR , as before,
and assume that (d, dR) is a bi-differential calculus already (i.e. that dR2 = 0). We set D1 = d,
but (for arbitrary k-forms α, β) set

D2

[
α

β

]
= dR

[
α

β

]
+

[
df 0
dh 0

]
∧

[
α

β

]
=

[
dRα + df ∧ α

dRβ + dh ∧ α

]

for some fixed functions f and h. The conditionsD1
2 = 0 and [D1,D2] = 0 are automatically

satisfied; we have D2
2 = 0 if and only if

ddRh = dh ∧ df ddRf = 0.

Starting with a suitable vector of functions, we will be able to generate a sequence of such
vectors by a procedure similar to the one in section 2. We want to show that the functions
so obtained are in some sense in involution, so that we are dealing again with complete
integrability. We shall first show that, assuming that we start from the situation where we
already have a Poisson–Nijenhuis structure on M as described in section 2, the conditions on
f and h derived above are necessary and sufficient to enable us to define a certain type of
bi-Hamiltonian structure on M × R.

Proposition 4.1. Let (M,ω) be a symplectic manifold andR a type (1, 1) tensor with vanishing
torsion, symmetric with respect to ω, and such that ω1 = 1

2 iRω is closed. We assume the
functions f and h satisfy ddRh = dh ∧ df and ddRf = 0. Then M × R can be equipped
with a pair of compatible Poisson brackets.

Proof. Let {·, ·} be the Poisson bracket on M associated with ω and {·, ·}1 the second one, as
described in section 2. We will extend these Poisson brackets to M × R. To do so, we must
decribe how they act on the extra coordinate function on R, which we denote by z. First, we
set {·, z} = 0, that is we specify that z should be a Casimir of {·, ·}. Then clearly the extended
bracket is still Poisson (i.e. it satisfies the Jacobi identity). Now we define the function ĥ on
M × R by ĥ = h + zf . We set

{·, z}1 = {·, ĥ}
and show that the given conditions on f and h ensure that this defines a Poisson bracket on
M × R. It is sufficient to consider whether the Jacobi identity holds with arguments z, φ and
ψ , where φ and ψ are independent of z. Now {φ, z}1 = {φ, h} + z{φ, f }, since z is a Casimir
of {·, ·}. Thus

{ψ, {φ, z}1}1 = {ψ, {φ, h}}1 + {ψ, z{φ, f }}1

= {ψ, {φ, h}}1 + {ψ, h}{φ, f } + z{ψ, {φ, f }}1 + z{φ, f }{ψ, f }.
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It follows that

{ψ, {φ, z}1}1 + {φ, {z, ψ}1}1 + {z, {ψ, φ}1}1

= {h, {ψ, φ}1} + {ψ, {φ, h}}1 − {φ, {ψ, h}}1 + {ψ, h}{φ, f } − {φ, h}{ψ, f }
+ z({f, {ψ, φ}1} + {ψ, {φ, f }}1 − {φ, {ψ, f }}1).

In order for the Jacobi identity to hold, the terms independent of z must vanish and the
coefficient of z must also vanish. The Poisson brackets on the right-hand side all involve
functions independent of z, so can be evaluated using the formulae of section 2. With Xφ

denoting as before the Hamiltonian vector field of φ calculated with respect to the Poisson
bracket coming from the symplectic form ω, we have

{ψ, {φ, h}}1 − {φ, {ψ, h}}1 + {h, {ψ, φ}1}
= ω1(Xψ, [Xφ,Xh]) − ω1(Xφ, [Xψ,Xh]) + Xh(ω1(Xψ,Xφ))

= (LXh
ω1)(Xψ,Xφ) = (diXh

ω1)(Xψ,Xφ) = −ddRh(Xψ,Xφ)

and

−{ψ, h}{φ, f } + {φ, h}{ψ, f } = df ∧ dh(Xψ,Xφ).

Thus the conditions for the existence of the gauged bi-differential calculus defined earlier are
precisely those required to ensure that {·, ·}1 satisfies the Jacobi identity.

Finally, we must show that the extended Poisson brackets are compatible, that is, that for
any constants λ and µ, λ{·, ·}1 + µ{·, ·} is also a Poisson bracket. Now the restriction of this
bracket to M is the Poisson bracket corresponding to the recursion operator λR + µI , where
I is the identity tensor. On the other hand,

λ{·, z}1 + µ{·, z} = λ{·, z}1 = {·, λĥ}.
Thus λ{·, ·}1 + µ{·, ·} is constructed according to the procedure described above, with the
recursion operator λR + µI and the functions λh and λf . But these quantities satisfy the
conditions just derived for the new bracket to be Poisson, if R, h and f do. So the extended
Poisson brackets are compatible. �

Remark. It is easy to see that the Poisson tensor associated to the bracket {·, ·}1 on M × R is
given by

�1 = �(R∗(·), ·) +
∂

∂z
∧ (Xh + zXf ).

As an alternative proof of the above proposition, one can verify that the Schouten bracket
[�1, �1] is zero and that [�,�1] = 0 also.

We now turn to the properties of a vector sequence of functions [f (m), h(m)]T constructed
recursively using the gauged bi-differential calculus, with a suitable choice of initial functions,
and under the assumption that the manifold is simply connected. The idea is to define
[f (m+1), h(m+1)]T by the rule D1[f (m+1), h(m+1)]T = D2[f (m), h(m)]T , or

d

[
f (m+1)

h(m+1)

]
= dR

[
f (m)

h(m)

]
+

[
df 0
dh 0

] [
f (m)

h(m)

]

or equivalently

df (m+1) = dRf
(m) + f (m)df dh(m+1) = dRh

(m) + f (m)dh

which can be started provided that D1D2[f (0), h(0)]T = 0. Take, for example, f (0) = 1 and
h(0) = 0. Then f (1) = f and h(1) = h. (Notice in passing the following differences between
the recursive construction here and the one we discussed for a simple bi-differential calculus
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in section 2, and more explicitly in [3]: the condition ddRf = 0 was the requirement on f to
start the recursive procedure in section 2, whereas now it is part of the conditions for having a
gauged bi-differential calculus, and we here initialize the recursion by choosing trivial values
for f (0) and h(0).)

Proposition 4.2. We consider the functions f (m) and h(m) as defined above and put

ĥ(m) = h(m) + zf (m).

We then have the following properties:

(1) both the h(m) and f (m) are in involution with respect to both Poisson brackets on M;
(2) {h(i), f (j)} + {f (i), h(j)} = 0 for every i, j � 1, and the same property holds with respect

to the second bracket on M;
(3) the functions ĥ(m) on M × R are in involution with respect to both brackets.

Proof. We write χ(m) to stand for either h(m) or f (m). The rule for generating χ(m+1), when
expressed in terms of Poisson brackets, is

{χ(m+1), ·} = {χ(m), ·}1 + f (m){χ(1), ·}.
We assume that {χ(i), χ(j)} = {χ(i), χ(j)}1 = 0 for all i, j with 1 � i, j � m; we show that
the same is true with m + 1 in place of m. First, for 1 � i � m

{χ(m+1), χ(i)} = {χ(m), χ(i)}1 + f (m){χ(1), χ(i)} = 0.

Then

0 = {χ(i+1), χ(m+1)} = {χ(i), χ(m+1)}1 + f (i){χ(1), χ(m+1)}
whence {χ(i), χ(m+1)}1 = 0.

Second, let k(i, j) stand for the function {h(i), f (j)} + {f (i), h(j)}. Then

k(i + 1, j) = {h(i), f (j)}1 + {f (i), h(j)}1 + f (i)({h(1), f (j)} + {f (1), h(j)})
= k(i, j + 1) + f (i)k(1, j) + f (j)k(i, 1).

Now suppose that k(i, j) = 0 for all i, j with 1 � i, j � m. It follows from the formula above
that k(m + 1, j) = 0 for 1 � j < m, while

k(m + 1,m) = {h(m), f (m)}1 + {f (m), h(m)}1 + f (m)k(1,m) = 0

and of course k(m+ 1,m+ 1) = 0. Finally, the first line in the expression for k(i + 1, j) shows
that the vanishing of the k(i, j) implies that also {h(i), f (j)}1 + {f (i), h(j)}1 = 0.

For the third part, we observe first that for any function φ on M

{φ, ĥ(m)}1 = {φ, h(m)}1 + {φ, z}1f
(m) + z{φ, f (m)}1

= {φ, h(m+1)} − f (m){φ, h(1)} + z({φ, f (m+1)} − f (m){φ, f (1)})
+ f (m)({φ, h(1)} + z{φ, f (1)})

= {φ, ĥ(m+1)}
while

{z, ĥ(m)}1 = {h(1), h(m)} + z({h(1), f (m)} + {f (1), h(m)}) + z2{f (1), f (m)} = 0

as a result of the preceding two properties, so that trivially also {z, ĥ(m)}1 = {z, ĥ(m+1)}. It
follows that the ĥ(m) satisfy the recursion relation

{·, ĥ(m+1)} = {·, ĥ(m)}1.
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The fact that these functions are in involution can now be deduced from this relation by an
inductive argument, or proved directly using the first two properties. �

Corollary. Suppose that the recursive generation of new functions breaks down at order m+1,
by which we mean that ĥ(m+1) = 0. Then

C(λ) =
m∑
i=0

λiĥ(i)

is a Casimir of the Poisson pencil � − λ�1.

This result is to some extent related to a theorem of Gelfand and Zakharevich about the
existence of a polynomial Casimir on an odd- dimensional bi-Hamiltonian manifold with a
Poisson pencil of maximal rank (see [7,11]). The main result in [7] is based on this theorem and
gives an interesting geometrical interpretation of the theory of Benenti about the separability
of the Hamilton–Jacobi equation (see [2] and references therein). We will highlight some
additional features of the results obtained by Ibort et al in the next section. However, it should
be emphasized that the scheme we have described in this section already covers the main
structural properties which are needed for that purpose and this scheme is valid for an arbitrary
symplectic manifold M and with respect to a general type (1, 1) tensor field R.

5. Conformal Killing tensors with vanishing torsion

By way of generalization of the results of section 3, we now look at the conditions for the
existence of the gauged bi-differential calculus, again from the perspective that h is given and
R, and in this case f , are unknown.

We consider the case in which h is a Hamiltonian of mechanical type on T ∗Q, and R = J̃ .
To keep the analogy with section 3, we will not assume from the outset thatNJ = 0. As before,
we assume that the kinetic energy part of h is determined by a metric, so that

h = 1
2g

ijpipj + V (q).

We will assume further that f is a function on Q. Then the condition ddJ̃ h = dh ∧ df

becomes, using results obtained earlier:

−J ijπi ∧ πj + gil(−J jk|l + J jl|k + J kl|j )pkdq
i ∧ πj

+ ( 1
2J

klRm
kij + gjk(J

lm|k − J lk|m)|i )plpmdq
i ∧ dqj + ddJV

= − ∂f

∂qi
dqi ∧ (gjkpkπj + dV ).

From the πi ∧πj terms we find that J must be symmetric, as before. The dqi ∧πj terms give

−Jjk|l + Jjl|k + Jkl|j = −gjk
∂f

∂ql
.

The symmetric part of this in k and l gives

Jkl|j = −1

2

(
gjk

∂f

∂ql
+ gjl

∂f

∂qk

)

from which it follows that
∂f

∂qj
= −(J k

k )|j or f = − tr J
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(up to a constant). Furthermore,

Jjk|l + Jjl|k + Jkl|j = −
(
gjk

∂f

∂ql
+ gkl

∂f

∂qj
+ glj

∂f

∂qk

)

which is to say that J is a conformal Killing tensor of gradient type. Moreover, if one substitutes
for the covariant derivatives in the expression for the torsion of J , which is

J l
i J

k
j |l − J l

j J
k
i|l + J k

l (J
l
i|j − J l

j |i )

one finds that it vanishes. So once again the vanishing of the torsion of J is a consequence of
the condition that ddJ̃ h must satisfy. If one takes the trace of the torsion on j and k one finds
that

dJ (tr J ) = 1
2d(tr J

2).

Thus the condition on f , which reduces to ddJ f = 0, is also satisfied automatically.
Finally, the terms in dqi ∧ dqj involving J vanish as a result of the differential condition

it satisfies, and we are left with the following condition on V :

ddJV = dV ∧ df.

We have therefore proved the following result, which adds some interesting features to
proposition 2 in [7].

Proposition 5.1. Let g be a given metric tensor field on Q and V and f functions on Q, and
let h be the Hamiltonian function on T ∗Q given by h = 1

2g
ijpipj + V (q). The necessary and

sufficient conditions for a type (1, 1) tensor field J on Q to have the property ddJ̃ h = dh∧df

are that J is symmetric and satisfies the equations

Jkl|j = −1

2

(
gjk

∂f

∂ql
+ gjl

∂f

∂qk

)

while the functions V and f satisfy ddJV = dV ∧ df . Such a J is a conformal Killing tensor
of g of gradient type and −f is its trace (up to a constant). Moreover, J will have vanishing
torsion and f has the property ddJ f = 0; this implies that all conditions are satisfied for the
existence of a gauged bi-differential calculus of the type described in the previous section.

The special property of the conformal Killing tensors we encounter here is characteristic
of all sufficiently general conformal Killing tensors with vanishing torsion, as we will now
show.

Proposition 5.2. Let J be a type (1, 1) tensor field on an n-dimensional (pseudo)-Riemannian
manifold (Q, g) such that the corresponding (0, 2) tensor is conformal Killing with factor α.
We assume further that J has n real, functionally independent eigenfunctions. Then NJ = 0
if and only if

Jkl|j = 1
2 (αlgjk + αkgjl).

This further implies that J is conformal Killing of gradient type.

Proof. We know that J satisfies
∑

Jjk|l = ∑
αlgjk , where the summation sign stands for the

cyclic sum over all indices. Putting

Tjkl = Jjk|l − 1
2 (αjgkl + αkgjl)

it follows that
∑

Tjkl = 0. The Nijenhuis condition now can be written in the form
Jm
j (Tmkl−Tmlk) = Jm

l Tjkm−Jm
k Tjlm. Adding to this the identity Jm

j (Tmkl +Tklm) = −Jm
j Tlmk ,

we obtain an expression for 2Jm
j Tmkl which is symmetric in j and k. It follows that

Jm
j Tmkl = Jm

k Tmjl.
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This indicates that for each fixed l, the symmetric matrix Tl with components Tjkl commutes
with J . Since J , by assumption, has distinct eigenvalues at each point of an open dense subset
of Q, it follows that all Tl are simultaneously diagonalizable. It then easily follows from the
symmetry properties of Tjkl that with respect to a basis of eigenvectors of J , all components
of Tl are actually zero. Hence, J has the required property, from which it further follows
that αj = ∂f/∂qj , with f = tr J . The proof in the other direction is contained in earlier
statements. �

We end this section by pointing out that the conditions on f and h in the case that R is the
complete lift J̃ again have an interpretation in terms of the Lie derivative of J̃ with respect to
the corresponding Hamiltonian vector fields.

Proposition 5.3. The conditions ddJ̃ f = 0 and ddJ̃ h = dh∧df , for arbitrary functions f, h
on T ∗Q, are equivalent to

LXf
J̃ = 0 LXh

J̃ = Xf ⊗ dh − Xh ⊗ df.

Proof. The statement about f has already been mentioned in section 3. Concerning Xh, we
know from the second of the equivalent properties in proposition 2.2 that

iLXh
J̃ dθ = −2ddJ̃ h = −2dh ∧ df

= dh ∧ iXf
dθ − df ∧ iXh

dθ

from which the result easily follows. �

6. Applications

We first briefly review the results of [7] and [1], before mentioning the new insights that our
work provides.

At the heart of the matter lie the recurrence relations

df (m+1) = dJ f
(m) + f (m)df dh(m+1) = dJ̃ h

(m) + f (m)dh

where h = 1
2g

ijpipj + V (q), J is a conformal Killing tensor of g with vanishing torsion
and functionally independent eigenfunctions, f = − tr J , and V satisfies ddJV = dV ∧ df .
Then, as Ibort et al show,

(1) for m = 1, 2, . . . , dim M we can take for f (m) the mth elementary symmetric function of
the eigenfunctions of J , and f (m) = 0 for m > dim M;

(2) with this choice of the f (m), h(m) takes the form h(m) = 1
2K

(m)ijpipj + V (m)(q),
m = 1, 2, . . . , dim M , where the K(m) are independent, pairwise commuting Killing
tensors of g with common closed eigenforms, K(1) = g, the V (m) satisfy dV (m) = dK(m)V

so that ddK(m)V = 0, and h(m) = 0 for m > dim M .

Such a collection of Killing tensors is called a Stäckel system. It is known [2, 7] that if
the metric g admits a Stäckel system and if the potential V satisfies ddK(m)V = 0 then the
Hamilton–Jacobi equation for the Hamiltonian h = 1

2g
ijpipj +V (q) is separable in orthogonal

coordinates.
In fact in [1], Benenti proves the following result.

Let (ui) be orthogonal coordinates on a Riemannian manifold (M, g). If

∂

∂ui
(ln gjj ) = 1

uj − ui
i �= j ui �= uj

then the Hamilton–Jacobi equation for geodesics is separable.
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Benenti shows that the tensor L whose components relative to the orthogonal coordinates
are

Lii = uigii Lij = 0 i �= j

is a conformal Killing tensor whose torsion vanishes, and is the generator of a Stäckel system.
This result is related to our work as follows. In proposition 5.2 we have proved that a

conformal Killing tensor field L, which has n real, functionally independent eigenfunctions,
satisfies NL = 0 if and only if

Lij |k = 1
2 (αigjk + αjgik).

Now the eigenfunctions ofLmay be used as coordinates (ui); with respect to these coordinates
L takes the form (as a type (1, 1) tensor)

L =
n∑

i=1

ui
∂

∂ui
⊗ dui

and since L is symmetric (as a type (0, 2) tensor), the metric tensor g is diagonal. The 1-form
α whose components appear in the formula for Ljk|l is given by α = d(tr L), so α = ∑

dui .
The formula for Ljk|l , re-expressed for convenience in the form

Li
j |k = 1

2 (α
igjk + αjδ

i
k)

reduces to

(uj − ui)% i
jj

= gjj

2gii
(uj − ui)% i

ij
= − 1

2

for i �= j ; when i, j and k are all different and when they are all the same the equations are
identically satisfied. But when the coordinates are orthogonal,

% i
jj

= − 1

2gii

∂gjj

∂ui
% i
ij

= 1

2gii

∂gii

∂uj

for i �= j , so the formula for Ljk|l reduces to just the one condition

∂

∂ui
(ln gjj ) = − 1

uj − ui
.

Since gjj = 1/gjj , this is identical to the condition in Benenti’s result.
Ibort et al show that the recurrence relations dh(m+1) = dJ̃ h

(m) +f (m)dh may be written in
the form {·, ĥ(m+1)} = {·, ĥ(m)}1 as in the proof of proposition 4.2; that is, that the ĥ(m) satisfy
Lenard’s recurrence relations for the bi-Hamiltonian structure on M × R. We have given
an alternative way of obtaining these recurrence relations, namely by using a certain gauged
bi-differential calculus. We have shown further that the consistency conditions for such a
bi-differential calculus are identical with the consistency conditions for such a bi-Hamiltonian
structure, in a rather more general context than that required for the separability argument.
Finally, we have shown that the conformal Killing tensor that occurs in the construction of
either the bi-differential calculus or the bi-Hamiltonian system must be of a special form, that
as a consequence the vanishing of its torsion is automatic and not an additional requirement,
and that sufficiently general conformal Killing tensors with vanishing torsion must take this
special form.

The separability results require that the conformal Killing tensor has functionally
independent eigenfunctions. By way of further application, we will illustrate how the results
of sections 4 and 5 can be used in a constructive procedure that may lead to the identification
of conservation laws even when this condition is not satisfied. The idea is to start with a given
metric tensor field g, i.e. with the kinetic energy part T of a Hamiltonian on T ∗Q, as the only
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data, and to proceed from there to construct suitable type (1, 1) tensor fields J , potentialsV and
functionsh(m) which Poisson-commute withh = T +V . The procedure works as follows. First,
the characteristic property of conformal Killing tensors with vanishing torsion, as identified
in proposition 5.1, is used as a set of partial differential equations for the determination of
suitable tensor fields J . The trace of such J defines corresponding functions f which then
give rise to equations for the potential via the condition ddJV = dV ∧ df . We finally appeal
to the recursive scheme described in proposition 4.2 to construct functions f (m) and h(m).

Let us illustrate this procedure by taking g to be the Euclidean metric (in dimension n).
Since raising or lowering indices in this case has no effect on the coordinate representation of
tensor fields, we will write all indices for convenience as lower indices. The equations for J
become (with Jkl = Jlk)

Jkl,j = −1

2

(
δjk

∂f

∂ql
+ δjl

∂f

∂qk

)

for some function f . It readily follows then that we must have (indices with a different name
in each equation are assumed to be different and there are no summations)

Jkl,j = 0 Jii,j = 0 Jii,i = − ∂f

∂qi
(qi) Jkl,k = −1

2

∂f

∂ql
(ql).

These equations are easy to solve and have the following general solution:

Jkl = aqkql + bkql + blqk + ckl

where the a, bk and ckl = clk are constants. Notice that for a �= 0, by a Euclidean coordinate
transformation, we can simplify this expression to

Jkl = aqkql + ckδkl

so that J is what Benenti, in [1], calls a planar inertia tensor. The case in which the ck (the
eigenvalues of ckl) are distinct leads, via a particular case of the results quoted above, to elliptic
coordinates for Euclidean space.

Suppose, however, we proceed to the other extreme by taking ck = 0 and a = 1. With
f = − ∑

i qi
2, the equations for V become

qi

(
qj

∂2V

∂qi∂qk
− qk

∂2V

∂qi∂qj

)
+ 3

(
qj

∂V

∂qk
− qj

∂V

∂qk

)
= 0

from which it follows that qj∂V/∂qk − qk∂V/∂qj must be a homogeneous function of degree
−2. This is so if V is of the form V = V1 +V2 where V1 is an arbitrary function of

∑
i qi

2 and
V2 is an arbitary function which is homogeneous of degree −2.

Next, we have to find functions (f (m), h(m)) recursively from the equations

df (m+1) = dJ f
(m) + f (m)df dh(m+1) = dJ̃ h

(m) + f (m)dh

with f (1) = f = −|q|2 and h(1) = h = 1
2 |p|2 + V (we have introduced obvious vector

notations here). The first hierarchy of functions immediately terminates, i.e. we find f (2) = 0,
whence f (m) = 0 for m � 2. (Note that in this case J has a single non-zero eigenfunction,
namely |q|2, with eigenvector q, so this is the expected result.) The complete lift of J (regarded
as a (1, 1) tensor) is given by

J̃ = qiqj

(
∂

∂qi
⊗ dqj +

∂

∂pj

⊗ dpi

)
+ (pjqi − piqj )

∂

∂pi

⊗ dqj .

A straightforward calculation then gives

h(2) = 1
2 (q · p)2 − 1

2 |q|2|p|2 − |q2|V2

and h(m) = 0 for m � 3. So, our procedure produces a single further quadratic integral for the
system with Hamiltonian h. We recover in this way results obtained by one of us previously
by different methods in [13].
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Appendix. Some features of complete lifts

If J is a type (1, 1) tensor field on a manifold Q, its complete lift J̃ to T ∗Q was defined in [4]
by the formula

iJ̃ (X)dθ = iXLJ vdθ

where J v is the vertical lift (a vector field on T ∗Q). (See also [14] for a different definition of
the complete lift.) An immediate property is that iJ vdθ = iJ̃ θ .

Lemma A.1. For all h ∈ C∞(T ∗Q), we have

iXh
dJ̃ θ = −dJ̃ h.

Proof. Making use (consecutively) of the commutator identity [iX, iJ̃ ] = iJ̃ (X), the definition
of dJ̃ and the relations just mentioned, we find

dJ̃ h = iJ̃ dh = −iJ̃ iXh
dθ = −iXh

iJ̃ dθ + iJ̃ (Xh)
dθ

= −iXh
dJ̃ θ − iXh

diJ̃ θ + iXh
LJ vdθ

= −iXh
dJ̃ θ − iXh

d(iJ̃ θ − iJ vdθ) = −iXh
dJ̃ θ.

�

Lemma A.2. J̃ is symmetric with respect to dθ , i.e. for all vector fields X, Y on T ∗Q, we have

dθ(X, J̃ (Y )) = dθ(J̃ (X), Y ).

Proof. Using the first-mentioned property, we have

iJ̃ (X)dθ = iXdiJ̃ θ = −iXdJ̃ θ + iXiJ̃ dθ.

Contracting this with Xh and interchanging the first two contractions in each term, we obtain

iJ̃ (X)iXh
dθ = −iXiXh

dJ̃ θ + iXiXh
iJ̃ dθ.

Using lemma A.1 and the commutator [iX, iJ̃ ] in the last term, we obtain the desired property
for Y = Xh. But since a local frame of vector fields on T ∗Q can be constructed out of
Hamiltonian vector fields, the result follows for arbitrary Y . �

Recalling now that for a general type (1, 1) tensor field U , iUω(X, Y ) = ω(U(X), Y ) +
ω(X,U(Y )), the symmetry of J̃ with respect to ω enables us to eliminate the vector field
argument X from the defining relation of J̃ , and we obtain iJ̃ dθ = 2LJ vdθ = 2diJ̃ θ . Hence,
we have

ω1 = dJ̃ θ = diJ̃ θ = dJ̃ ∗θ

which is the same as d(Ĵ ∗θ), as considered in section 2.
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